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1 Introduction and heuristics

The goal of this course is to construct the Lebesgue integral and a correspond-
ing theory of integration. The Lebesgue integral is a generalisation of the Rie-
mann integral, powerful in the sense that it is much more flexible. The set
of functions which are Lebesgue integrable is vastly greater than the set of
Riemann integrable functions.

Furthermore, the Lebesgue integral is much more malleable to limiting pro-
cesses. With the tools in this course, we will be able to answer questions such
as:

(a) If ( fn) is a sequence of functions fn : R→ R which converges pointwise
to a function f : R→ R, limn fn(x) = f (x), ∀x ∈ R, is it true that

lim
n→∞

∞∫
−∞

fn(x) dx =

∞∫
−∞

f (x) dx?

(b) If ( fn) is a sequence of functions, fn : R→ R, when is it true that

∞

∑
n=1

∞∫
−∞

fn(x) dx =

∞∫
−∞

∞

∑
n=1

fn(x) dx?

(c) If f : R2 → R is a differentiable function of two variables, one of which
we understand as a parameter, is true that

d
da

∞∫
−∞

f (x, a) dx =

∞∫
−∞

d
da

f (x, a) dx?
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It turns out that the right starting point is consider the integration of char-
acteristic functions. Given a set A ⊂ R, the characteristic function χA : R→ R

is the function

χA(x) =

{
1, x ∈ A,
0, x /∈ A.

Note that if A = [a, b] is an interval, then

∫
R

χA(x) dx =

b∫
a

1 dx = b− a

is the length of A. When integrable, we call the integral of χA the measure of
A (generalised length of A), denoted µ(A),

µ(A) =
∫
R

χA(x) dx.

If A = [a1, b1] ∪ [a2, b2] is the union of two disjoint intervals (i.e. a1 < b1 <
a2 < b2) then it is clear that

µ([a1, b1] ∪ [a2, b2]) = µ([a1, b1]) + µ([a2, b2]) = (b1 − a1) + (b2 − a2).

If A = ∪n[an, bn] is an infinite union of disjoint1 intervals, then µ(A) is the
infinite sum of the individual lengths,

(1) µ (∪n[an, bn]) =
∞

∑
n=1

µ([an, bn]) =
∞

∑
n=1

(bn − an).

This agrees with the definition µ(A) =
∫

R
χA(x) dx as an improper integral,

as is usually discussed in connection with the Riemann integral. Later we will
justify (1) in terms of Lebesgue measure and the Lebesgue integral. Note that
the measure µ(A) could be either finite or infinite (µ(A) = ∞) in this example.
To describe (1) succinctly, we say that the measure µ is countably additive over
the disjoint sets [an, bn].

If A = {a} consists of a single point, its length is 0,

µ({a}) =
a∫

a

1 dx = 0.

For more complicated sets it is not as clear what their measure should be.

1Meaning that [an, bn] ∩ [am, bm] = ∅ whenever n 6= m.
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1. Introduction and heuristics

1.1 question. What is the measure of the set of rational numbers Q? That is,
what is µ(Q)?

The correct answer is that µ(Q) = 0. This is because Q is countable – a
concept studied in the next section. This means that it can be written as a
sequence (rn) of rational numbers (without repetition),

Q = {rn : n ∈N}.

Since µ({rn}) = 0, and we desire length to be additive over countably infinite
unions of disjoint sets, it must be that

µ(Q) =
∞

∑
n=1

µ({rn}) =
∞

∑
n=1

0 = 0.

It is natural to try to assign every set A ⊂ R a measure µ(A). Unfortunately,
as the following theorem shows, it is not possible to do this for every set A ⊂ R

while also preserving the reasonable properties of µ associated with length.
Before we can construct the Lebesgue integral, we must therefore first specify
the measurable sets (and the measurable functions). This motivates the layout
of these notes: we will begin by studying abstract measure theory before we
construct the integral.

The following construction uses the axiom of choice and the concept of
countability (covered in the next section). It is a relatively complicated con-
struction which you do not have to learn; feel free to skip it.

1.2 theorem (Vitali). There is a set A ⊂ R which cannot reasonably be assigned a
measure.

Proof. Define an equivalence relation R on R by

xRy⇐⇒ x− y ∈ Q.

This relation divides R into equivalence classes [x] = {x + r : r ∈ Q}. Let L be
the set of equivalence classes. Clearly, each equivalence class Λ ∈ L contains a
point in [0, 1]. For each Λ ∈ L, pick exactly one point xΛ ∈ Λ ∩ [0, 1] (axiom of
choice), and let

A = {xΛ : Λ ∈ L}.

The set Q∩ [−1, 1] is countable; arrange it in a sequence without repetition

Q∩ [−1, 1] = {rn : n ∈N}.

For each n ∈N, let
An = A + rn.
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An is a translation of the set A. Translations should leave length unchanged
(“reasonably”), and therefore it should be that

(2) µ(An) = µ(A), ∀n ∈N.

Let B be the set B = ∪n An. Since An ⊂ [−1, 2] for every n, B ⊂ [−1, 2].
Suppose x ∈ [0, 1]. Then x belongs to some equivalence class Λ = [xΛ]. In
other words, there is r ∈ Q such that x− xΛ = r. Since 0 ≤ x, xΛ ≤ 1, it follows
that r ∈ Q ∩ [−1, 1], and thus there is an n such that r = rn. Hence x ∈ An,
since x = xΛ + rn and xΛ ∈ A. Hence x ∈ B.

We have shown that
[0, 1] ⊂ B ⊂ [−1, 2].

Since µ([0, 1]) = 1 and µ([−1, 2]) = 3 it should (“reasonably”) be that

(3) 1 ≤ µ(B) ≤ 3.

On the other hand, the family {An}n is disjoint. This means the following:
if n 6= m, then

An ∩ Am = ∅;

because if x ∈ An and x ∈ Am, then there are y, z ∈ A such that

x = y + rn = z + rm.

However, this means that y and z are in the same equivalence class, [y] = [z].
A was constructed to have exactly one point from each equivalence class, so it
must be that y = z, contradicting that rn 6= rm.

Since B = ∪n An is a countable union of disjoint sets, the measure µ should
(“reasonably”) be additive over the sets An,

µ(B) =
∞

∑
n=1

µ(An) =
∞

∑
n=1

µ(A),

where the last equality follows from (2). If µ(A) = 0, then µ(B) = 0. If µ(A) >
0, then µ(B) = ∞. In either case we have arrived at a contradiction to (3).

The conclusion is that we cannot expect the set A to be measurable for a
measure µ which satisfies certain properties associated with length (marked
with reasonably in the argument).
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2. Cardinality

2 Cardinality

2.1 Definitions

2.1 definition. Given sets X and Y we write

(a) X ∼ Y iff there exists a bijection f : X → Y.

Note that for sets X, Y, and Z

(b) (i) X ∼ X, if X 6= ∅ ; (ii) X ∼ Y =⇒ Y ∼ X ; (iii) X ∼ Y ∼ Z =⇒ X ∼
Z. [(i) idX : X → X is a bijection. (ii) if f : X → Y is a bijection, then so is
f−1 : Y → X. (iii) the composition of bijections is a bijection.]

The sets X and Y are said to have the same cardinality if X ∼ Y, and we write

(c) Card(X) = Card(Y) to signify this.

We also write

(d) Card(X) ≤ Card(Y) iff there is an injection g : X → Y.

(e) Card(X) < Card(Y) iff there is an injection g : X → Y but no bijection
f : X → Y (iff Card(X) ≤ Card(Y) and Card(X) 6= Card(Y)).

(f) Card(∅) ≤ Card(X) for every set X, and Card(X) ≤ Card(∅) iff X = ∅
(these are conventions).

It is clear that

(A) X ⊂ Y =⇒ Card(X) ≤ Card(Y) [∅ 6= X ⊂ Y =⇒ f : X → Y, f (x) = x,
is injective.]

(B) Card(X) ≤ Card(Y) ≤ Card(Z) =⇒ Card(X) ≤ Card(Z) [the compo-
sition of injections is injective.]

Here are two elementary observations.

2.2 proposition. There exists an injection f : X → Y iff there exists a surjection
g : Y → X.

Proof. (⇒) Let f : X → Y be injective. Consider Y = f (X) ∪ (Y \ f (X)). Pick
a ∈ X. Define g : Y → X by g( f (x)) = x if x ∈ X and g(y) = a if y ∈ Y \ f (X).
Clearly, g is surjective.

(⇐) Suppose g : Y → X is surjective. For each x ∈ X choose yx ∈ Y such
that g(yx) = x. Then f : X → Y, f (x) = yx is injective ( f (x1) = f (x2) =⇒
yx1 = yx2 =⇒ x1 = g(yx1) = g(yx2) = x2).

2.3 proposition. Let X, Y be non-empty. Then
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2.2. Power sets

(a) Card(X) ≤ Card(Y) iff there is a surjection g : Y → X [by Definition 2.1 (d)
and Proposition 2.2].

(b) For every function f : X → Y,

Card( f (X)) ≤ Card(X)

[since f : X → f (X) is a surjection].

We now state the Schröder–Bernstein Theorem.

2.4 theorem. Let X, Y be sets such that Card(X) ≤ Card(Y) and Card(Y) ≤
Card(X). Then Card(X) = Card(Y).

Proof. See e.g. Algebra by S. Lang, pp. 511–512.

2.2 Power sets

The power set, P(X), of a set X, is the set of all subsets of X. It is clear that
Card(X) ≤ Card(P(X)) [if X 6= ∅, then f : X → P(X), f (x) = {x}, is an
injection.] In fact;

2.5 theorem (Cantor). Card(X) < Card(P(X)).

Proof. Suppose there is a bijection f : X → P(X) (or even just a surjection). Put
S = {x ∈ X : x /∈ f (x)}. Pick a ∈ X such that f (a) = S ( f is surjective). Now,
if a ∈ S then a /∈ f (a) = S, and if a /∈ S then a ∈ f (a) = S – a contradiction.
Hence, there is no such f.

Given ∅ 6= A ⊂ X the characteristic function of A, χA : X → {0, 1} is
defined by

χA(x) =

{
1, x ∈ A,
0, x /∈ A.

By convention, χ∅ = 0 (the zero function).

2.6 notation. {0, 1}X is the set of all functions f : X → {0, 1}.

Note that f ∈ {0, 1}X iff f = χA where A = {x ∈ X : f (x) = 1}. Thus,
F : P(X)→ {0, 1}X, F(A) = χA is a bijection. Hence

2.7 proposition. Card(P(X)) = Card({0, 1}X).
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2. Cardinality

2.3 Countable sets

2.8 definition. A set X is countable iff X = ∅ or there is an injection f : X →
N.

Equivalently, a set X is countable iff X = ∅ or there is a surjection g : N→
X (by Proposition 2.2).

Sequences. Note that a sequence (xn) in a set X is the function f : N→ X,
f (n) = xn, and conversely every function f : N → X may be realised as the
sequence ( f (n)) in X. Thus, the sequences in X are precisely the functions
f : N→ X. Thus, we have

∅ 6= X is countable iff there is a sequence (xn) in X such that
X = {xn : n ∈N}.

2.9 proposition. Let S ⊂N, where S is infinite. Then Card(S) = Card(N)

Proof. Let x1 be the smallest element of S. Inductively, we may choose a se-
quence (xn) in S such that, for each n, xn+1 is the smallest element of S \
{x1, . . . , xn}. We have S = {xn : n ∈ N} [Since, by construction, given any
k ∈ S it holds that k ≤ xk, we must have k = xr for some 1 ≤ r ≤ k.] The
function f : N→ S, f (n) = xn is bijective.

For any set S such that Card(S) = Card(N), we say that S is countably infi-
nite.

2.10 properties. The following is true.

(a) All finite sets are countable.

(b) Every subset of a countable set is countable.

(c) If f : X → Y is injective and Y is countable, then X is countable.

(d) If f : X → Y is any function and X is countable, then f (X) is countable.
(The image of a countable set is countable.)

(e) If X is infinite and countable then Card(X) = Card(N).

Proof. Exercise (see Exercise 1).

2.11 proposition. N×N is countable.

Proof. The map f : N×N → N given by f (m, n) = 2m3n is injective. (Hence
N×N ∼N).

Next we show that a countable union of countable sets is countable.
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2.4. The uncountability of R

2.12 proposition. Let (Xn) be a sequence of countable sets. Then S =
⋃∞

n=1 Xn is
countable.

Proof. We may suppose Xm 6= ∅ for all m ∈N. For each m ∈N, we may write
Xm = {xm,n : n ∈N}, so that

S = {xm,n : m, n ∈N}.

Hence f : N×N→ S, f (m, n) = xm,n, is surjective. Therefore, since N×N is
countable, so is S.

2.13 proposition. The set of rational numbers Q is countable. (Hence Q ∼N).

Proof. Put Q+ = {x ∈ Q : x > 0}, Q− = {x ∈ Q : x < 0}. The maps
f : N ×N → Q+, f (m, n) = m/n and g : N ×N → Q−, g(m, n) = −m/n
are surjective. Hence Q+ and Q− are countable (Proposition 2.11), and so
Q = Q− ∪ {0} ∪Q+ is countable (Proposition 2.12).

Here is a corollary for later use.

2.14 corollary. If (Iλ)λ∈Λ is a disjoint2 family of intervals of R, then Λ is count-
able.

Proof. In this case, for each λ ∈ Λ, choose a rational number rλ ∈ Iλ. Then
the map f : Λ → Q, f (λ) = rλ is injective. Hence, since Q is countable, Λ is
countable.

2.15 remark. Let X be an infinite set. Then

(a) Card(N) ≤ Card(X) [Since X must contain a set {xn : n ∈ N} where
xm 6= xn if m 6= n. Thus there is an injection f : N→ X, f (n) = xn.]

(b) Card(N) < Card(X) iff X is uncountable (i.e. X is not countable).

(c) P(X) is uncountable (by (b) and Theorem 2.5).

(d) P(N) is uncountable (in particular).

2.4 The uncountability of R

We say that a decimal expansion

0.a1a2a3 . . . , (an ∈ {0, 1, . . . , 9}, ∀n ∈N)

is strict if it does not have a tail of 9s (i.e. there is no N such that an = 9,
∀n ≥ N). Every strict expansion of this form lies in [0, 1), and every element
of [0, 1) has a unique strict decimal expansion.

2meaning Iλ ∩ Iµ = ∅ whenever λ 6= µ.
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2. Cardinality

2.16 proposition. [0, 1) is uncountable.

Proof. The proof is by Cantor’s diagonal argument (which was also used to
prove Theorem 2.5). Suppose that [0, 1) were countable. Then (see the discus-
sion following Definition 2.8) there is a sequence (xn) in [0, 1) with

(4) [0, 1) = {xn : n ∈N}.

For each n, we have the strict decimal expansion

xn = 0.an1an2 . . . ann . . .

But look at b = 0.b1b2 . . . bn . . . given by

bn =

{
1, if ann 6= 1
2, if ann = 1.

This b is chosen so that bn 6= ann, ∀n. Fix n ∈ N. Since the (strict) decimal
expansion of b and xn differ at the nth place, we have b 6= xn. Therefore, by
(4), b /∈ [0, 1), a contradiction. Hence, [0, 1) is uncountable.

2.17 corollary. (a) R is uncountable. (b) R \Q is uncountable.

Proof. (a) Since [0, 1) ⊂ R, and [0, 1) is uncountable, R cannot be countable.
(b) If R \Q is countable, then so is R = Q∪ (R \Q) (by Propositions 2.12 and
2.13). Contradiction.

2.18 example (The Cantor set). The Cantor set

C =

{
∞

∑
n=1

2an

3n : an = 0 or 1 ∀n

}

is a famous compact subset of [0, 1]. By definition, f : {0, 1}N → C is a bijection,

f (χA) =
∞

∑
n=1

2χA(n)
3n .

Hence C ∼ {0, 1}N. Since {0, 1}N ∼ P(N) (Proposition 2.7), it follows that
C ∼ P(N). In particular, C is uncountable.

2.19 theorem. P(N) ∼ R.

Proof. Since Q ∼ N, we have P(Q) ∼ P(N) [if f : Q → N is a bijection, so
is f̄ : P(Q) → P(N), f̄ (S) = f (S)]. Further, if Pb(Q) denotes the set of all

10



2.4. The uncountability of R

bounded subsets of Q, then

g : Pb(Q)→ R, g(S) = sup S

is surjective (since every real number is the supremum of a bounded set in Q).
Hence

Card(R) ≤ Card(Pb(Q)) ≤ Card(P(Q))

= Card(P(N)) = Card(C) ≤ Card(R).

Therefore, by the Schröder-Bernstein theorem (Theorem 2.4),we have equality
throughout.

11



3. Extended real number system

3 Extended real number system

The extended real line, R = R ∪ {−∞, ∞}, consists of R together with two
additional symbols ∞ and −∞ satisfying the following properties.

(a) −∞ < ∞ and −∞ < x < ∞, ∀x ∈ R.

(b) x + (±∞) = ±∞ = (±∞) + x, ∀x ∈ R.

(c) Let x ∈ R. (i) If x > 0, then x · (±∞) = ±∞ = (±∞) · x (including x = ∞).
(ii) If x < 0, then x · (±∞) = ∓∞ = (±∞) · x (including x = −∞).

(d) 0 · (±∞) = 0 = (±∞) · 0.

No meaning is attached to ∞−∞, ∞
∞ , or to x

0 for any x ∈ R.
Supremum and infima. Let ∅ 6= A ⊂ R. Note that A is bounded above by

∞ and below by −∞.

• If A is not bounded above by a real number, we write sup A = ∞.

• If A is not bounded below by a real number, we write inf A = −∞.

• We put sup{−∞} = −∞ and inf{∞} = ∞.

Limits. The following definitions subsume the usual ones of real analysis.

3.1 definition. Let (xn) be a sequence in R.

(a) lim xn = ∞⇐⇒ ∀a ∈ R ∃N such that a ≤ xn, ∀n ≥ N.

(b) lim xn = −∞⇐⇒ ∀a ∈ R ∃N such that xn ≤ a, ∀n ≥ N.

(c) If x ∈ R, then lim xn = x ⇐⇒ ∀ε > 0 ∃N such that x − ε < xn <
x + ε, ∀n ≥ N. [Note that in this case, (xn) is eventually in R after which
the definition is the usual one.]

In any case of lim xn = a ∈ R, we often use “xn → a” as equivalent notation.

Monotone sequences. By the above remarks together with the classical
convergence theorems for monotone sequences the following are evident.

• If (xn) is an increasing sequence in R, then

xn → sup
n≥1

xn (= sup{xn : n ∈N}).

• If (xn) is a decreasing sequence in R, then

xn → inf
n≥1

xn (= inf{xn : n ∈N}).

12



3.1. Upper and lower limits

3.1 Upper and lower limits

Let (xn) be a sequence in R. For each n, put

un = sup
k≥n

xk, `n = inf
k≥n

xk.

Then (un) is decreasing and (`n) is increasing (in R), so that

lim un = inf
n≥1

un = u, lim `n = sup
n≥1

`n = `.

• u is defined to be the upper limit of (xn), written lim xn or lim sup xn, i.e.

lim xn = inf
n≥1

sup
k≥n

xk.

• ` is defined to be the lower limit of (xn), written lim xn or lim inf xn, i.e.

lim xn = sup
n≥1

inf
k≥n

xk.

Observe that

(a) `n ≤ xn ≤ un for all n ∈N. [By definition.]

(b) `m ≤ un, for all m, n ∈ N. [m ≤ n =⇒ `m ≤ `n ≤ un; m ≥ n =⇒ `m ≤
um ≤ un.]

(c) ` ≤ u. [For each m, `m ≤ un, ∀n =⇒ for each m, `m ≤ infn≥1 un = u =⇒
` = supm≥1 `m ≤ u.]

In other words,
lim xn ≤ lim xn.

3.2 theorem. Let (xn) be a sequence in R. Then lim xn exists in R if and only if
lim xn = lim xn. In this case, lim xn = lim xn = lim xn.

Proof. Exercise.

Sequences of functions. Let ( fn) be a sequence of functions, where fn : X →
R, for all n ∈N. For each fixed x ∈ X we have the sequence ( fn(x)) in R. The
functions supn≥1 fn, infn≥1 fn, lim fn and lim fn : X → R are defined pointwise
as follows.

(sup
n≥1

fn)(x) = sup
n≥1

fn(x), ( inf
n≥1

fn)(x) = inf
n≥1

fn(x), ∀x ∈ X.

(lim fn)(x) = lim fn(x), (lim fn)(x) = lim fn(x), ∀x ∈ X.

We also denote lim fn by lim sup fn, and lim fn by lim inf fn.

13



3. Extended real number system

3.2 Positive and negative parts of f : X → R

Given a, b ∈ R, put

a ∨ b = max{a, b}, a ∧ b = min{a, b}.

Note that for a, b ∈ R,

a ∨ b =
1
2
(a + b + |a− b|), a ∧ b =

1
2
(a + b− |a− b|).

In particular,

a ∨ 0 =
1
2
(a + |a|), (−a) ∨ 0 = −(a ∧ 0) =

1
2
(|a| − a).

Evidently, ∞ ∨ 0 = ∞, (−∞) ∨ 0 = −(∞ ∧ 0) = 0. Consequently, for every
extended real number,

a = a ∨ 0− (−a) ∨ 0, (a ∨ 0) · ((−a) ∨ 0) = 0, ∀a ∈ R.

Let f , g : X → R. Define f ∨ g, f ∧ g : X → R pointwise by

( f ∨ g)(x) = f (x) ∨ g(x), ( f ∧ g)(x) = f (x) ∧ g(x), x ∈ X.

Define f+, f− : X → R by

f+ = f ∨ 0, f− = (− f ) ∨ 0.

Then

(a) f+, f− ≥ 0, f+ · f− = 0,

(b) f = f+ − f−, | f | = f+ + f−.

The functions f+ and f− are called the positive and negative parts of f . (Note,
however, that f− ≥ 0.)

14



4 σ-algebras

4.1 definition. A σ-algebra on a set X is a subset F ⊂ P(X) such that

(i) X ∈ F ;

(ii) if A ∈ F , then X \ A ∈ F ; (Hence A ∈ F ⇐⇒ X \ A ∈ F .)

(iii) if (An) is a sequence in F , then ∪An ∈ F .

In words, a σ-algebra on a set X is a collection of subsets of X which contains X
and which is closed under the taking of complements and of countable unions.

Here are some immediate consequences of the definition.

4.2 properties. Let F be a σ-algebra on X. Then

(a) ∅ ∈ F [X ∈ F by (i), so ∅ = X \ X ∈ F by (ii).]

(b) If (An) is a sequence in F , then ∩An ∈ F [An ∈ F , ∀n
(ii)
=⇒ X \ An ∈

F , ∀n
(iii)
=⇒ X \ (∩An) = ∪(X \ An) ∈ F

(ii)
=⇒ ∩An ∈ F .]

(c) If A, B ∈ F , then A \ B ∈ F [A \ B = A ∩ (X \ B) ∈ F by (ii) and (b).]

4.3 example. P(X) is the largest σ-algebra on a given set X, and {∅, X} is the
smallest.

The following is an important technical lemma.

4.4 lemma. Let F be a σ-algebra on X. Let (An) be a sequence in F . Then there is a
disjoint sequence (Bn) in F such that Bn ⊂ An, ∀n, and ∪Bn = ∪An.

Proof. Put B1 = A1, Bn = An \ (A1 ∪ · · · ∪ An−1), ∀n ≥ 2. Then Bn ∈ F and
Bn ⊂ An, ∀n. Further, if m < n, then

Bm ∩ Bn ⊂ Am ∩ [An \ (A1 ∪ · · · ∪ An−1)] ⊂ Am ∩ (An \ Am) = ∅.

Finally, x ∈ ∪An =⇒ there is a least k with x ∈ Ak =⇒ x ∈ Bk ⊂ ∪Bn.
Hence ∪An = ∪Bn.

4.5 definition (Generating σ-algebras.). If (Fλ)λ∈Λ is a family of σ-algebras
on a set X, then ∩λ∈ΛFλ is also a σ-algebra on X. Given S ⊂ P(X), the intersec-
tion of all σ-algebras F on X with S ⊂ F (P(X) is one such F ) is the smallest
σ-algebra containing S. It is called the σ-algebra on X generated by S.

4.6 definition (Borel sets.). Let (X, τ) be a topological space. The σ-algebra
on X generated by τ (i.e. generated by the set of open subsets of X) is the
Borel algebra, β(X), of X. [Note that Definition 4.1 (ii) =⇒ β(X) is also the
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4. σ-algebras

σ-algebra on X generated by the closed subsets of X.] The members of β(X)
are the Borel subsets of X. In particular, β(R) denotes the σ-algebra of Borel
sets of R, where R is equipped with its usual topology.

4.7 definition (Measurable spaces.). A measurable space is a pair (X,F )
where F is a σ-algebra on X. The members of F are referred to as the F -
measurable subsets of X. (Or just as the measurable subsets of X when safe.)

16



5 Measurable functions

Let (X,F ) be a measurable space.

5.1 definition. f : X → R is measurable iff {x ∈ X : f (x) > a} ∈ F for every
a ∈ R.

There are three other natural equivalences.

5.2 proposition. For a function f : X → R, the following are equivalent.

(a) {x ∈ X : f (x) > a} ∈ F , ∀a ∈ R.

(b) {x ∈ X : f (x) ≤ a} ∈ F , ∀a ∈ R.

(c) {x ∈ X : f (x) ≥ a} ∈ F , ∀a ∈ R.

(d) {x ∈ X : f (x) < a} ∈ F , ∀a ∈ R

Hence, (b), (c), and (d) are each equivalent to the measurability of f . We make free
use of this fact without mention.

Proof. The equivalences follow from the following.

• (a)⇔(b): Take complements (and use Definition 4.1(ii)).

• (c)⇔(d): Take complements.

• (a)⇒(c): a ∈ R =⇒ {x : f (x) ≥ a} = ∩∞
n=1{x : f (x) > a− 1/n}.

• (c)⇒(a): a ∈ R =⇒ {x : f (x) > a} = ∪∞
n=1{x : f (x) ≥ a + 1/n}.

5.3 example.

(a) Constant functions are measurable. For let f : X → R, where f (x) = α,
∀x ∈ X (α ∈ R). Then, for a ∈ R,

{x ∈ X : f (x) > a} =
{

X, if α > a,
∅, if α ≤ a.

Hence f is measurable, since X, ∅ ∈ F .

(b) Let A ⊂ X. Then χA is measurable⇐⇒ A ∈ F (⇐⇒ A is measurable).

χA(x) =

{
1, x ∈ A,
0, x /∈ A.

=⇒ {x : χA(x) > a} =


X, if a < 0,
A, if 0 ≤ a < 1,
∅, if 1 ≤ a,

from which the assertion follows.

17



5. Measurable functions

(c) Consider X = R with the σ-algebra of Borel sets β(R) – the σ-algebra
generated by the open subsets of R. Suppose that f : R → R is continu-
ous. Then f−1(U) ⊂ R is open for every open set U ⊂ R. In particular,
with U = (a, ∞), we find that

{x ∈ R : f (x) > a} = f−1((a, ∞)) ∈ β(R).

Thus continuous functions are Borel-measurable.

Measurability is preserved under limits.

5.4 proposition. Let ( fn) be a sequence of measurable functions, f : X → R. Then

(a) sup fn and inf fn are measurable, since if a ∈ R

{x : sup fn(x) ≤ a} = ∩∞
n=1{x : fn(x) ≤ a} ∈ F ,

{x : inf fn(x) ≥ a} = ∩∞
n=1{x : fn(x) ≥ a} ∈ F .

(b) lim fn (= infk≥1(supn≥k fn)) and lim fn (= supk≥1(infn≥k fn)) are measur-
able [follows immediately from (a)].

(c) If ( fn) converges (pointwise in R), then lim fn is measurable [in this case,
lim fn = lim fn, so (b)⇒(c)].

The following lemma may be used to reduce measurability questions to the
real-valued case f : X → R (as opposed to f : X → R).

5.5 lemma. f : X → R is measurable⇐⇒ ∃ a sequence ( fn) of measurable functions
fn : X → R such that fn → f .

Furthermore, ( fn) may be chosen so that for every x ∈ X for which f (x) ∈ R,
there is N ≥ 1 such that fn(x) = f (x) whenever n ≥ N (N depends on x).

Proof. (⇒) See Exercise 3. (⇐) By Proposition 5.4 (c).

5.6 proposition. If f , g : X → R are measurable, then so are

(a) f ∨ g, f ∧ g, f+ and f−,

(b) f g,

(c) f + g if defined, and | f |. [Note that f + g is certainly defined when f , g : X →
[0, ∞].]

Proof. Case I. Let f , g : X → R be measurable. We shall observe that (i) c f ,
c ∈ R, (ii) f 2, (iii) f+g, and (iv) fg are measurable. Let a ∈ R throughout.

18



(i) c = 0 =⇒ c f = 0 =⇒ measurable (Example 5.3(a)). For c 6= 0,

{x : c f (x) > a} =
{
{x : f (x) > a/c}, c > 0
{x : f (x) < a/c}, c < 0

∈ F .

(ii)

{x : f (x)2 > a} =
{

X, a < 0
{x : f (x) < −

√
a} ∪ {x : f (x) >

√
a}, a ≥ 0

∈ F .

(iii) Given x ∈ X, f (x) + g(x) > a ⇔ f (x) > a − g(x) ⇔ ∃r ∈ Q s.t.
f (x) > r > a− g(x) ⇔ ∃r ∈ Q s.t. f (x) > r and g(x) > a− r. For each r ∈ Q,
let

Sr = {x : f (x) > r} ∩ {x : g(x) > a− r} ∈ F .

Thus, since Q is countable,

{x : f (x) + g(x) > a} = ∪r∈QSr ∈ F

(iv) Combining (i), (ii), and (iii), f g = 1
2(( f + g)2 − f 2 − g2) is measurable.

General case Let f , g : X → R be measurable. The assertions concerning
f ∨ g, f ∧ g, and f+ = f ∨ 0 follow from Proposition 5.4 (a). For the other
cases, choose as in Lemma 5.5 sequences ( fn) and (gn) of measurable real-
valued functions fn, gn : X → R such that fn → f and gn → g.

f g: By (iv), fngm are measurable, ∀m, n ∈ N. Hence, fixing m, f gm =
limn→∞ fngm is measurable by Proposition 5.4 (c). As is f g = limm→∞ f gm.

f + g when defined: By (iii), fn + gn is measurable, ∀n. Thus, if f + g is
everywhere defined, then f + g = lim( fn + gn) is measurable.

Finally, f measurable =⇒ − f measurable (cf. (i)) =⇒ f− = (− f ) ∨ 0
measurable =⇒ | f | = f+ + f− measurable.
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6. Measures

6 Measures

6.1 definition. Let (X,F ) be a measurable space. A measure on F is a func-
tion µ : F → [0, ∞] such that

(i) µ(∅) = 0,

(ii) µ(∪n An) = ∑∞
n=1 µ(An), whenever (An) is a disjoint sequence in F .

The triple (X,F , µ) is a measure space.

6.2 example. The following are examples of measures.

(a) Dirac measures. Take a measurable space (X,F ) and a ∈ X. Define
δa : F → {0, 1} by

δa(A) =

{
1, if a ∈ A,
0, if a /∈ A

.

This is the Dirac measure on F concentrated at a.

(b) Counting measure. Consider µ : P(N) → [0, ∞] given by µ(A) = |A|,
when A is finite, and µ(A) = ∞ when A is infinite.

(c) Lebesgue measure. With X = R and F = β(R), let, for A ∈ β(R),

µ(A) = inf{∑(bn − an) : A ⊂
⋃
(an, bn),

((an, bn)) is a sequence of open intervals}.

Then µ is a measure on β(R), the Lebesgue measure, studied in Sec-
tion 10. Showing the countable additivity of µ is highly non-trivial, see
Theorem 10.8. We will also consider µ on a larger σ-algebra than β(R),
namely, the σ-algebra of Lebesgue measurable sets.

Let (X,F , µ) be a measure space.

6.3 properties. Let E, F ∈ F with E ⊂ F. Then

(a) µ(F) = µ(E) + µ(F \ E) [F = E ∪ (F \ E) (disjoint union),]

(b) µ(E) ≤ µ(F) [follows from (a),]

(c) µ(F \ E) = µ(F)− µ(E), if µ(E) < ∞. [Follows from (a).]

6.4 properties. For any sequence (An) in F , we have µ(∪An) ≤ ∑∞
n=1 µ(An).

Proof. As in Lemma 4.4 there is a disjoint sequence (Bn) in F such that Bn ⊂
An, ∀n, and ∪Bn = ∪An. Then

µ(∪An) = µ(∪Bn) = ∑ µ(Bn) ≤∑ µ(An).
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6.1. Almost everywhere

A sequence (An) in F is increasing if An ⊂ An+1 for every n ∈ N, and
decreasing if An ⊃ An+1 for every n ∈N.

6.5 proposition (Monotone convergence theorem). If (An) is an increasing se-
quence in F , then µ(An)→ µ(∪∞

m=1Am).

Proof. Let B1 = A1, and Bn = An \ An−1 for n ≥ 2. Then (Bn) is a disjoint
sequence in F with An = B1 ∪ · · · ∪ Bn and ∪An = ∪Bn. In fact, (Bn) is the
sequence from Lemma 4.4. Then

µ(An) =
n

∑
m=1

µ(Bn)→
∞

∑
m=1

µ(Bm) = µ(∪Bm) = µ(∪Am).

6.6 proposition (Monotone convergence theorem). If (An) is an decreasing
sequence in F , with µ(A1) < ∞, then µ(An)→ µ(∩∞

m=1Am).

Proof. Apply Proposition 6.5 to the increasing sequence (A1 \ An):

µ(A1)− µ(An) = µ(A1 \ An)→ µ[∪(A1 \ Am)]

= µ[A1 \ (∩Am)] = µ(A1)− µ(∩Am).

6.7 remark. The finiteness condition on A1 can not be dropped. For example
consider the counting measure on P(N). The sets An = {k ∈ N : k ≥ n},
n ≥ 1, have infinite measure but form a decreasing sequence with empty
intersection.

6.1 Almost everywhere

Let (X,F , µ) be a measure space.

6.8 definition. A set N ∈ F is said to be a null set if µ(N) = 0.

Here are some immediate observations:

(a) If E ∈ F is contained in a null set, then E is a null set. [By Properties 6.3
(b).]

(b) A countable union of null sets is a null set. [If (En) is a sequence in F
with µ(En) = 0, ∀n, then µ(∪En) ≤ ∑ µ(En) = 0 by Properties 6.4.]

6.9 remark. In the present generality, if E ⊂ X is contained in a null set we
cannot assert that E is a null set because it might not belong to F . It is possible
to extend (X,F , µ) to its completion (X,F , µ) for which every subset of a null
set is measurable, but we shall not need this.

6.10 definition (Almost everywhere.). A statement about points in X, which
is true except possibly at the points of a set contained in a null set, is said to
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6. Measures

hold almost everywhere, (a.e) in abbreviation.

For example, for functions f , g : X → R, f = g (a.e) iff {x : f (x) 6= g(x)} is
contained in a null set. By confining attention to measurable phenomena the
situation tends to tidier.

6.11 example. Let f , g : X → R be measurable, and let fn : X → R be measur-
able for each n ∈N. Then (see Exercise 4) the sets

{x : f (x) 6= g(x)}, {x : f (x) = ∞}, {x : f (x) = −∞}, {x : lim
n

fn(x) exists}

are all measurable (belong to F ). As are their complements. Therefore,

(a) f = g (a.e.)⇐⇒ µ({x : f (x) 6= g(x)}) = 0,

(b) f is finite (a.e.)⇐⇒ µ({x : f (x) = ±∞}) = 0,

(c) ( fn) converges (a.e.)⇐⇒ µ({x : limn fn(x) does not exist}) = 0.

When we think of measurable functions in the context of a measure space
(X,F , µ), we identify the functions which are equal almost everywhere. This
is formalised in the next proposition.

6.12 proposition. f ∼ g ⇐⇒ f = g (a.e.) defines an equivalence relation on the
set of measurable functions on X.

Proof. Reflexivity and symmetry are clear. Transitivity: f ∼ g and g ∼ h im-
plies f = g on X \ N1 and g = h on X \ N2, for certain null sets N1 and N2. In
turn this implies that f = h on (X \ N1) ∩ (X \ N2) = X \ (N1 ∪ N2), so that
f ∼ h, since N1 ∪ N2 is a null set.
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7 Simple functions and positive measurable functions

A sequence ( fn) of functions fn : X → R is increasing if fn(x) ≤ fn+1(x),
∀x ∈ X, ∀n ∈ N. In this case lim fn = f exists ( f = sup fn), and we write
fn ↗ f . By a positive function on a set X is meant a function f : X → [0, ∞].

Let (X,F ) be a measurable space.

7.1 definition. A simple function on X is a measurable function, s : X →
[0, ∞) such that s(X) is finite. That is, s(X) = {a1, . . . , an} for some real num-
bers a1, . . . , an ≥ 0.

It is clear that

(i) all sums and products of simple functions are simple functions,

(ii) ∑n
i=1 ciχEi is a simple function whenever 0 ≤ ci < ∞ and Ei ∈ F , i =

1, . . . , n. [Using Example 5.3 and Proposition 5.6.]

7.2 proposition (Canonical form of a simple function). Let s 6= 0 be a simple
function on X. Let a1, . . . , an be the distinct positive values taken by s. For each i,
put Ai = {x : s(x) = ai}. Then

s =
n

∑
i=1

aiχAi ,

the right hand side of which is the canonical form of s. Note that A1, . . . , An are
measurable (that is, they belong to F ) and mutually disjoint.

7.3 remark. By convention the canonical form of the zero function is χ∅.

The following theorem is key in constructing the integral of a positive measur-
able function against a given measure µ.

7.4 theorem. If f : X → [0, ∞] is measurable, then there is an increasing sequence
(sn) of simple functions on X such sn ↗ f .

Proof. We will explicitly construct (sn). For each n, partition [0, n) into n2n

pieces of length 1/2n:

[0, n) =
n2n⋃
k=1

[
k− 1

2n ,
k

2n

)
.

For n ∈N and 1 ≤ k ≤ n2n, let

En,k = f−1
([

k− 1
2n ,

k
2n

))
= {x :

k− 1
2n ≤ f (x) <

k
2n },
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7. Simple functions and positive measurable functions

and let Fn = {x : f (x) ≥ n}. For each n, let

sn = (n− 1)χFn +
n2n

∑
k=1

k− 1
2n χEn,k .

Note that En,1, . . . , En,n2n , Fn are all mutually disjoint. Furthermore, En,k and
Fn are measurable, since f is measurable. Hence sn is measurable, since it is a
sum of measurable real-valued functions.

It remains to show that sn ↗ f (that is, for each x, (sn(x)) is increasing
and sn(x) → f (x)). Fix x ∈ X. If f (x) = ∞, then x ∈ Fn, ∀n. Hence sn(x) =
(n− 1)↗ ∞ for such a point x.

If f (x) < ∞, then there is a unique integer m ≥ 0 such that m ≤ f (x) <
m + 1. For n ≤ m, x ∈ Fn, and hence sn(x) = (n− 1). Hence sn(x) is increasing
for 1 ≤ n ≤ m. For n ≥ m + 1, there is a unique k such that x ∈ En,k, that is,

k− 1
2n ≤ f (x) <

k
2n .

Since

(5) sn(x) =
k− 1

2n ,

we see that
0 ≤ f (x)− sn(x) <

k
2n −

k− 1
2n =

1
2n .

Since 2−n → 0, it follows that lim sn(x) = f (x) also for points x with f (x) < ∞
(and therefore for all x ∈ X.)

Next, note that[
k− 1

2n ,
k

2n

)
=

[
2(k− 1)

2n+1 ,
2(k− 1) + 1

2n+1

)⋃ [
2(k− 1) + 1

2n+1 ,
2k

2n+1

)
.

Hence x ∈ En+1,2k−2 ∪ En+1,2k−1. Therefore, either

sn+1(x) =
2k− 2
2n+1 =

k− 1
2n , or sn+1(x) =

2k− 1
2n+1 .

In both cases, it follows that sn(x) ≤ sn+1(x) (by (5)).
It only remains to check that sn−1(x) ≤ sn(x) for n = m + 1. In this case we

have that

sn(x) =
k− 1
2m+1 =

k
2m+1 − 2−(m+1) > f (x)− 2−(m+1)

≥ m− 2−(m+1) > m− 1 = sn−1(x).
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8 The integral for positive measurable functions

Let (X,F , µ) be a measure space throughout.

8.1 definition.

(a) If s is a simple function on X with canonical form ∑ aiχAi , the integral
of s over X with respect to µ is denoted and defined by∫

X

s dµ = ∑
i

aiµ(Ai).

(b) If f : X → [0, ∞] is measurable, then the integral of f over X with respect
to µ is denoted and defined by

∫
X

f dµ = sup


∫
X

s dµ : s ≤ f , s is a simple function on X

 .

8.2 remark. By a tedious but straightforward combinatorial argument we
have:

c ≥ 0 and s, t simple on X =⇒
∫
X

(cs + t) dµ = c
∫
X

s dµ +
∫
X

t dµ.

In particular, the canonical form requirement in Definition 8.1(a) can be dropped.

The following is immediate from definition.

8.3 proposition.

f , g : X → [0, ∞] measurable and f ≤ g =⇒
∫
X

f dµ ≤
∫
X

g dµ.

8.4 lemma. If (En) is an increasing sequence in F with ∪En = X, then

(a) µ(A ∩ En)↗ µ(A), ∀A ∈ F ;

(b)
∫
X

sχEn dµ↗
∫
X

s dµ, for every simple function s on X.

Proof. (a): Since (A ∩ En) is an increasing sequence of measurable sets with
union A, this follows from Proposition 6.5. (b): This follows from (a) and defi-
nition. Use that χEχF = χE∩F.

8.5 theorem (Monotone convergence theorem (MCT)). If ( fn) is an increasing
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8. The integral for positive measurable functions

sequence of measurable functions fn : X → [0, ∞] such that fn ↗ f , then∫
X

fn dµ↗
∫
X

f dµ.

Proof. Put α = sup
∫

X fn dµ. Then α ≤
∫

X f dµ. Take any simple s ≤ f . Let
0 < c < 1. Put En = {x : cs(x) ≤ fn(x)}, for each n. Then (En) is an increasing
sequence of measurable sets and X = ∪En. Since, for each n, csχEn ≤ fnχEn ≤
fn, we have

c
∫
X

sχEn dµ ≤
∫
X

fn dµ ≤ α.

Taking limits, using Lemma 8.4, gives c
∫

X s dµ ≤ α. Since c < 1 is arbitrary,∫
X s dµ ≤ α. Hence, by definition,

∫
X f dµ ≤ α, giving equality.

8.6 theorem (Fatou’s lemma). If ( fn) is any sequence of measurable functions
fn : X → [0, ∞], then ∫

X

(lim fn) dµ ≤ lim
∫
X

fn dµ.

Proof. Let gn = infk≥n fk, so that gn ↗ limk fk. By MCT
∫

X gn dµ↗
∫

X limk fk dµ.
On the other hand,∫

X

gn dµ ≤
∫

fk dµ, ∀k ≥ n =⇒
∫
X

gn dµ ≤ inf
k≥n

∫
fk dµ.

Taking limits implies the statement.

Theorem 7.4 together with MCT immediately gives

8.7 theorem. If f : X → [0, ∞] is measurable, then there exists a sequence (sn) of
simple functions such that sn ↗ f and∫

X

sn dµ↗
∫
X

f dµ.

8.8 corollary (Semi-linearity of the integral).

f , g : X → [0, ∞] measurable, c ≥ 0 =⇒
∫
X

(c f + g) dµ = c
∫
X

f dµ +
∫
X

g dµ.

Proof. Step 1: The assertion holds when f and g are simple functions (Re-
mark 8.2). Step 2, general case: choose increasing sequences (sn) and (tn) such
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8.1. Integrating over subsets

that sn ↗ f and tn ↗ t, giving csn + tn ↗ f . Now apply MCT, giving us that

∫
X

(c f + g) dµ = lim
n

∫
X

(csn + tn) dµ = lim
n

c
∫
X

sn dµ +
∫
X

tn dµ


= c

∫
X

f dµ +
∫
X

g dµ.

8.1 Integrating over subsets

Let f : X → [0, ∞] be measurable.
Given E ∈ F , we write∫

E

f dµ =
∫
X

f χE dµ (the integral of f over E).

Thus, for every E ∈ F ,
∫

X f dµ =
∫

E f dµ +
∫

X\E f dµ.

8.9 proposition. If µ(E) = 0, then
∫

E f dµ = 0.

Proof. If f = χA, then f χE = χE∩A, and so
∫

E f dµ = µ(E ∩ A) = 0. It follows
that for any simple s,

∫
E s dµ = 0. For a general measurable function f : X →

[0, ∞], take simple sn so that sn ↗ f . Then snχE ↗ f χE. Hence

0 =
∫
E

sn dµ ↗
MCT

∫
E

f dµ =⇒
∫
E

f dµ = 0.

8.10 theorem (Chebyshev’s inequality). For 0 < c < ∞, let

E = {x : f (x) ≥ c}.

Then
µ(E) ≤ 1

c

∫
E

f dµ.

Proof. Note that cχE ≤ f χE. Hence

cµ(E) =
∫
X

cχE dµ ≤
∫
X

f χE dµ =
∫
E

f dµ.

8.11 proposition. ∫
X

f dµ = 0⇐⇒ f = 0 (a.e).

Proof. Let
E = {x : f (x) 6= 0} = {x : f (x) > 0}.
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Then E = ∪En, where En = {x : f (x) ≥ 1/n}, n ≥ 1. (En) is increasing, so
µ(En)↗ µ(E) (MCT). By Chebyshev,

µ(En) ≤ n
∫
En

f dµ ≤ n
∫
E

f dµ = n
∫
X

f dµ.

Hence, if
∫

X f dµ = 0, then µ(En) = 0, ∀n, and therefore µ(E) = 0, which by
definition means that f = 0 (a.e). Conversely , if f = 0 (a.e.), then µ(E) = 0,
and ∫

X

f dµ =
∫

X\E

f dµ +
∫
E

f dµ =
∫
E

f dµ = 0,

by Proposition 8.9.

8.12 proposition. Suppose
∫

X f dµ < ∞. Then

(a) f is real-valued (a.e) [i.e. µ({x : f (x) = ∞}) = 0.]

(b)
∫

X f dµ =
∫

E f dµ, where E = {x : f (x) < ∞}.

Proof. (a): Let A = {x : f (x) = ∞}. Then A ⊂ An = {x : f (x) ≥ n}. Hence,

µ(A) ≤ µ(An) ≤
1
n

∫
X

f dµ→ 0.

(b): This follows by (a) and Proposition 8.9.
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9 The space of integrable functions L(X,F , µ)

Let (X,F , µ) be a measure space. In view of Proposition 8.12 we make the
following definition.

9.1 definition. A function f : X → R is integrable with respect to µ if and
only if f is measurable and

∫
X | f | dµ < ∞. We denote the set of all such func-

tions by L(X,F , µ).

Given a measurable f : X → R, we have f = f+ − f−, | f | = f+ + f−, and
by Corollary 8.8 that ∫

X

| f | dµ =
∫
X

f+ dµ +
∫
X

f− dµ.

The following are immediate from this and definition.

9.2 proposition. Let f : X → R be measurable. Then

(a) f ∈ L(X,F , µ)⇐⇒ | f | ∈ L(X,F , µ)⇐⇒ f+, f− ∈ L(X,F , µ).

(b) | f | ≤ g for some g ∈ L(X,F , µ) =⇒ f ∈ L(X,F , µ). [Because if | f | ≤ g ∈
L(X,F , µ), then

∫
X | f | dµ ≤

∫
X g dµ < ∞.]

9.3 definition. Let f ∈ L(X,F , µ). We define∫
X

f dµ =
∫
X

f+ dµ−
∫
X

f− dµ.

Note that

f ∈ L(X,F , µ) =⇒

∣∣∣∣∣∣
∫
X

f dµ

∣∣∣∣∣∣ ≤
∫
X

| f | dµ,

since ∣∣∣∣∣∣
∫
X

f dµ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
X

f+ dµ−
∫
X

f− dµ

∣∣∣∣∣∣ ≤
∫
X

f+ dµ +
∫
X

f− dµ =
∫
X

| f | dµ.

9.4 theorem (Linearity).

(a) L(X,F , µ) is a real linear space.

(b) The map I : L(X,F , µ)→ R given by I f =
∫

X f dµ is a real linear map.

29



9. The space of integrable functions L(X,F , µ)

Proof. (a): If α ∈ R and f , g ∈ L(X,F , µ), then, by Corollary 8.8,∫
X

|α f + g| dµ ≤
∫
X

|α|| f |+ |g| dµ = |α|
∫
X

| f | dµ +
∫
X

|g| dµ < ∞,

and thus α f + g ∈ L(X,F , µ).
(b): (i) Suppose f , g ∈ L(X,F , µ) with f , g ≥ 0. Put h = f − g. Since h =

h+ − h−, we have h+ + g = h− + f , hence, using Corollary 8.8,∫
X

h+ dµ +
∫
X

g dµ =
∫
X

h− dµ +
∫
X

f dµ.

And so, by definition,∫
X

( f − g) dµ =
∫
X

h+ dµ−
∫
X

h− dµ =
∫
X

f dµ−
∫
X

g dµ.

(ii) Given f , g ∈ L(X,F , µ), apply (i) to f + g = ( f+ + g+)− ( f− + g−), to
get ∫

X

( f + g) dµ =
∫
X

f dµ +
∫
X

g dµ.

(iii) Given α ∈ R, apply (i) to α f = α f+ − α f− if α ≥ 0, and to α f =
(−α) f− − (−α) f+ if α < 0.

9.5 corollary (Order preservation). If f , g ∈ L(X,F , µ) with f ≤ g, then∫
X f dµ ≤

∫
X g dµ.

Proof. f ≤ g =⇒ 0 ≤ g− f =⇒ 0 ≤
∫

X(g− f ) dµ =
∫

X g dµ−
∫

X f dµ.

9.6 proposition (Almost everywhere). Let f : X → R be measurable and g ∈
L(X,F , µ) such that f = g (a.e). Then f ∈ L(X,F , µ),

∫
X f dµ =

∫
X g dµ and∫

X | f | dµ =
∫

X |g| dµ.

Proof. Note that f = g (a.e) if and only if | f − g| = 0 (a.e). By Proposition 8.11,
this is equivalent to

∫
X | f − g| dµ = 0. In particular f − g ∈ L(X,F , µ). Since

g ∈ L(X,F , µ) and L(X,F , µ) is a linear space, it follows that f ∈ L(X,F , µ).
Furthermore,∣∣∣∣∣∣

∫
X

f dµ−
∫
X

g dµ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
X

( f − g) dµ

∣∣∣∣∣∣ ≤
∫
X

| f − g| dµ = 0,

and so
∫

X f dµ =
∫

X g dµ. Since | f | = |g| (a.e) it also follows that
∫

X | f | dµ =∫
X |g| dµ.
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9.1. Integrating over subsets

9.7 proposition. Let f : X → R be measurable.

(a) If E ∈ F with µ(E) = 0, then
∫

X f χE dµ = 0.

(b) If | f | ≤ g (a.e), where g ∈ L(X,F , µ), then f ∈ L(X,F , µ).

Proof. See Exercise 7.

9.1 Integrating over subsets

Given f ∈ L(X,F , µ) and E ∈ F we write∫
E

f dµ =
∫
X

f χE dµ.

Note that f χE ∈ L(X,F , µ), since | f χE| ≤ | f |. Thus, if f ∈ L(X,F , µ) and
E ∈ F , then ∫

X

f dµ =
∫
E

f dµ +
∫

X\E

f dµ.

Note that if f , g ∈ L(X,F , µ) and f = g (a.e), then, with E = {x : f (x) =
g(x)}, we have ∫

E

f dµ =
∫
X

f dµ =
∫
X

g dµ =
∫
E

g dµ.

9.2 Dominated convergence theorem

9.8 theorem (Dominated convergence theorem (DCT)). Let ( fn) be a sequence
in L(X,F , µ) such that fn → f (pointwise). Suppose that there exists a g ∈ L(X,F , µ)
such that | fn| ≤ g, ∀n ∈N. Then f ∈ L(X,F , µ) and

lim
n→∞

∫
X

fn dµ =
∫
X

f dµ.

Proof. This is essentially a corollary of Fatou’s lemma. Since | f | ≤ g and g ∈
L(X,F , µ) it follows by Proposition 9.2(b) that f ∈ L(X,F , µ). Note also that
f = lim fn = lim fn. Hence

(i) 0 ≤ fn + g =⇒
∫

X( f + g) dµ =
∫

X lim( fn + g) dµ ≤ lim
∫

X( fn + g) dµ =
lim
∫

X fn dµ +
∫

X g dµ =⇒
∫

X f dµ ≤ lim
∫

X fn dµ.

(ii) Since 0 ≤ − fn + g, (i) also gives that
∫

X(− f ) dµ ≤ lim
∫

X(− fn) dµ =

− lim
∫

X fn dµ =⇒ lim
∫

X fn dµ ≤
∫

X f dµ.

We have shown that∫
X

f dµ ≤ lim
∫
X

fn dµ ≤ lim
∫
X

fn dµ ≤
∫
X

f dµ.
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9. The space of integrable functions L(X,F , µ)

Hence
lim

n→∞

∫
X

fn dµ =
∫
X

f dµ.
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10 Lebesgue measure (on R)

Intervals. The length, L(I) of an interval I ⊂ R is defined as follows.

L(I) =

{
b− a, if I = (a, b), [a, b], (a, b], or [a, b),
∞, if I is an unbounded interval.

10.1 definition (Outer measure (not a measure!)). Let A ⊂ R. The Lebesgue
outer measure, µ∗(A), of A is given by

µ∗(A) = inf
{
∑ L(In) : A ⊂ ∪In, (In) is a sequence of open intervals

}
.

10.2 properties.

(a) If A ⊂ B ⊂ R, then µ∗(A) ≤ µ∗(B).

(b) µ∗({x}) = 0, ∀x ∈ R.

(c) µ∗(∅) = 0.

(d) µ∗(I) = L(I), for every interval I.

Proof. (a): By definition. (b): For all n, {x} ⊂ (x− 1/n, x + 1/n), whence

µ∗({x}) ≤ L((x− 1/n, x + 1/n)) = 2/n→ 0.

(c): By (a) and (b), since ∅ ⊂ {x}.
(d): If I = [a, b], then I ⊂ (a− 1/n, b + 1/n) for every n, so that µ∗(I) ≤

b− a + 2/n, giving µ∗(I) ≤ b− a. On the other hand, consider a cover of [a, b]
by a sequence of open intervals (In). Since [a, b] is compact we may suppose,
after renumbering, that [a, b] is contained in the finite union of I1, . . . , Ik, say,
where each Ir ∩ [a, b] is non-empty (and so is an interval, not necessarily open).
This gives us that

b− a ≤ L(I1) + · · ·+ L(Ik) ≤∑ L(In).

Hence b− a ≤ µ∗(I) by definition, as required.
(d’): Suppose I = (a, b), (a, b], or [a, b). If n ≥ (b− a)/2, then [a + 1/n, b−

1/n] ⊂ I ⊂ [a, b]. By applying (d) twice, we see that

(b− a)− 2/n ≤ µ∗(I) ≤ b− a, ∀n =⇒ µ∗(I) = b− a.

(d”): If I is an unbounded interval, we can choose [an, bn] ⊂ I with bn −
an → ∞, and since by (d) bn − an ≤ µ∗(I), for all n, we have µ∗(I) = ∞.

10.3 proposition (Countable subadditivity). For every sequence (En) of subsets
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10. Lebesgue measure (on R)

En ⊂ R, we have that

µ∗ (∪En) ≤
∞

∑
n=1

µ∗(En).

Proof. Let ε > 0. For each n choose a countable open interval cover En ⊂ ∪In,m
such that

∞

∑
m=1

L(In,m) ≤ µ∗(En) + ε/2n.

Since ∪En ⊂ ∪n,m In,m we have that

µ∗(∪En) ≤
∞

∑
n=1

∞

∑
m=1

L(In,m) ≤
∞

∑
n=1

µ∗(En) + ε
∞

∑
n=1

1
2n =

∞

∑
n=1

µ∗(En) + ε.

Letting ε→ 0 finishes the proof.

10.4 proposition. µ∗(E) = 0 for every countable set E ⊂ R.

Proof. E = {xn : n ∈N} = ∪{xn} =⇒ µ∗(E) ≤ ∑ µ∗({xn}) = ∑ 0 = 0.

10.5 remark. It follows that every subset of R with strictly positive outer mea-
sure is uncountable. This gives another proof that intervals are uncountable.

For a subset E of R, we write Ec = R \ E.

10.6 definition (Lebesgue measurable sets). A set E ⊂ R is Lebesgue mea-
surable if and only if

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec), ∀A ⊂ R.

LetM denote the set of all Lebesgue measurable subsets of R.

10.7 proposition. Let E ⊂ R with µ∗(E) = 0. Then E ∈ M.

Proof. A ⊂ R =⇒ µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(A ∩ Ec) ≤ µ∗(A).

The following can be proven by straightforward, but very lengthy, manip-
ulations of the definition.

10.8 theorem (Carathéodory’s criterion).

(a) M is a σ-algebra.

(b) µ = µ∗|M is a measure onM, called the Lebesgue measure.

(c) M contains all Borel subsets of R.
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Proof. See Theorem 1.7.3 in Tao’s “An Introduction to Measure Theory” for (a)
and (b).

(c) then follows by: (i) Checking that open intervals are Lebesgue mea-
surable. (ii) Since every open set U ⊂ R is a countable union of open in-
tervals, it follows that all open sets are in M. (iii) Since the Borel algebra
β(R) is the smallest σ-algebra on R containing the open sets, it follows that
β(R) ⊂M.

In particular,M contains all open sets, closed sets and intervals in R, with
µ(I) = L(I) for every interval I in R. Note that every countable subset of R is
Lebesgue measurable with measure zero, by Propositions 10.4 and 10.7.

10.9 example (An uncountable null set). Recall the Cantor set C of Exam-
ple 2.18. It is uncountable, but also a null set, that is, µ(C) = 0. [One can
understand C as an intersection of closed intervals Cn of length (2/3)n. Hence
C ∈ M with µ(C) ≤ (2/3)n → 0, implying µ(C) = 0.]

For E ⊂ R and a ∈ R, let E + a = {x + a : x ∈ E}.

10.10 proposition (Translation invariance). Let E ∈ M and a ∈ R. Then E+ a ∈
M and µ(E + a) = µ(E).

Proof. See Exercise 8.

10.11 proposition (The Lebesgue measure is complete). If A ⊂ E, and E ∈ M
with µ(E) = 0 then A ∈ M (and µ(A) = 0).

Proof. Since A ⊂ E we have that µ∗(A) ≤ µ∗(E) = µ(E) = 0. Hence A ∈ M
by Proposition 10.7.

10.12 proposition (Continuous functions). Let f , g : R→ R be continuous. Then

(a) f is Lebesgue measurable. [a ∈ R =⇒ {x : f (x) > a} is open and so belongs
toM.]

(b) f = 0 (a.e) =⇒ f = 0. [ f 6= 0 =⇒ E = {x : f (x) 6= 0} contains an
interval I =⇒ µ(E) 6= 0 =⇒ f 6= 0 (a.e).]

(c) f = g (a.e) =⇒ f = g. [Apply (b) to f − g.]

10.13 example. The characteristic function, f , of Q is Lebesgue measurable
with f = 0 (a.e). (Why?) But f 6= 0.

35



11. The Lebesgue integral (on R)

11 The Lebesgue integral (on R)

Throughout we confine attention to the Lebesgue measure µ : M → [0, ∞],
introduced in Section 10. Given A ∈ M, we consider the σ-algebra of all
Lebesgue measurable subsets of A,

MA = {E ∈ M : E ⊂ A}, and Lebesgue measure µ|MA : MA → [0, ∞].

We write L(A) = L(A,MA, µ) for the space of all Lebesgue integrable func-
tions f : A→ R. Further, for A ∈ M, we write∫

A

f dµ =
∫
A

f dx =
∫
A

f (x) dx,

and in the case of intervals (for a, b ∈ R with a < b)

∫
[a,b]

f dµ =

b∫
a

f dx,
∫

[a,∞)

f dµ =

∞∫
a

f dx

∫
(−∞,a]

f dµ =

a∫
−∞

f dx,
∫
R

f dµ =

∞∫
−∞

f dx.

11.1 remark. With respect to Lebesgue measure, µ, every subset of a null set in
M again lies inM (Proposition 10.11). As a result if A ∈ M and f , g : A→ R

are functions such that f = g (a.e) we have

(a) f is measurable ⇐⇒ g is measurable [See Exercise 8],

(b) f ∈ L(A)⇐⇒ g ∈ L(A) [By (a) and Proposition 9.6].

Furthermore, suppose that B = A ∪ N, where N is a null set, µ(N) = 0. Then

(c) f ∈ L(B)⇐⇒ f χA ∈ L(A) [By (b)].

Hence we identify the spaces L(B) and L(A). For example, we need not dis-
tinguish between L([a, b]) and L((a, b)), or between the integrals

∫
[a,b] f dµ and∫

(a,b) f dµ.

11.1 The Lebesgue versus the Riemann integral

For a Riemann integrable (hence bounded) function f : [a, b] → R we (tem-
porarily, see Theorem 11.2) denote the Riemann integral of f over [a, b] by

R−
b∫

a

f dx.
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11.1. The Lebesgue versus the Riemann integral

We denote the space of all Riemann integrable functions f : [a, b] → R by
R([a, b]).

Step functions. By a step function, h : [a, b]→ R is meant a function of the
form h = ∑ akχJk , where each ak ∈ R and each Jk is a subinterval of [a, b]. In
this case the Lebesgue and Riemann integrals of h clearly coincide

(6)
∫

h dx = ∑ akµ(Jk) = ∑ akL(Jk) = R−
b∫

a

h dx.

11.2 theorem. Let f ∈ R([a, b]). Then f ∈ L([a, b]) and R−
∫ b

a f dx =
∫ b

a f dx.

Proof. By the definition of the Riemann integral we can choose sequences
(tn) ↗ and (un) ↘ of step functions such that −K ≤ tn ≤ f ≤ un ≤ K,
where K = sup | f |, and such that, using (6),

(7) R−
b∫

a

f dx = lim
n→∞

b∫
a

tn dx = lim
n→∞

b∫
a

un dx.

The measurable functions t = lim tn and u = lim un satisfy

(8) t ≤ f ≤ u.

On the other hand, since |tn|, |un| ≤ Kχ[a,b] ∈ L([a, b]), the DCT gives us that
t, u ∈ L([a, b]),

∫
tn dx →

∫
t dx, and

∫
un dx →

∫
u dx. By (7) we conclude that

b∫
a

t dx =

b∫
a

u dx.

Thus, 0 ≤ u− t with
∫
(u− t) dx = 0. Hence t = u (a.e) so that f = u (a.e) by

(8). Hence f ∈ L([a, b]) (Remark 11.1) and

b∫
a

f dx =

b∫
a

u dx = R−
b∫

a

f dx.

The converse of Theorem 11.2 is false. That is, R([a, b]) ⊂ L([a, b]) but
R([a, b]) 6= L([a, b]).

11.3 example. Consider E = [a, b] ∩Q. If f denotes the characteristic function
of E, then f is Lebesgue integrable (with integral µ(E) = 0.) But f is not
Riemann integrable.
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11. The Lebesgue integral (on R)

11.2 Improper Riemann integrals

Given a ∈ R, recall that f : [a, ∞) → R is said to be improperly Riemann
integrable if f is Riemann integrable on [a, b] for all real numbers b > a and
limb→∞

∫ b
a f dx exists in R, in which case we write

R−
∞∫

a

f dx = lim
b→∞

b∫
a

f dx.

The space of all such functions is denoted R([a, ∞)).
Recall from Proposition 9.2 the equivalences

(9) f ∈ L([a, ∞))⇐⇒ | f | ∈ L([a, ∞))⇐⇒ f+, f− ∈ L([a, ∞)).

These are not valid, in general, for R([a, ∞)).

11.4 example. Define f : [0, ∞)→ R piecewise by: f (x) = (−1)n/n, whenever
x ∈ [n− 1, n) and n ∈N. Then, for every n ∈N,

n∫
0

f dx =
n

∑
k=1

(−1)k

k
→

∞

∑
k=1

(−1)k

k
[Alternating harmonic series],

but
n∫

0

| f | dx =
n

∑
k=1

1
k

,

which diverges (harmonic series). Thus, f belongs to R([a, ∞)), but | f | does
not (neither does f+, nor f−).

11.5 theorem. Let a ∈ R and let f : [a, ∞)→ R be Riemann integrable on [a, b] for
all real b > a. Then f ∈ L([a, ∞)) if and only if | f | ∈ R([a, ∞)), in which case also
f ∈ R([a, ∞)) and

∞∫
a

f dx = R−
∞∫

a

f dx.

Proof. (a): Suppose first that f ≥ 0. Since f χ[a,a+n] ↗ f , the MCT and our
assumptions give

a+n∫
a

f dx =
∫

[a,∞)

f χ[a,a+n] dµ→
∫

[a,∞)

f dµ.

Thus, since f ∈ L([a, ∞)) ⇐⇒
∫
[a,∞) f dµ < ∞, the desired result is immediate

from the definitions and Theorem 11.2.
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11.3. Examples

(b): For a general f , this follows by (9) and (a). For

f ∈ L([a, ∞))⇐⇒ | f |, f+, f− ∈ L([a, ∞))⇐⇒ | f |, f+, f− ∈ R([a, ∞)),

and in this case f = f+ − f− ∈ R([a, ∞)) and

∞∫
a

f dx =

∞∫
a

f+ dx−
∞∫

a

f− dx = R−
∞∫

a

f+ dx− R−
∞∫

a

f− dx = R−
∞∫

a

f dx.

11.3 Examples

Let α > 1 and consider f : [1, ∞) → R, f (x) = 1/xα. Using Theorem 11.2 we
have

b∫
1

f dx =
1− 1/bα−1

α− 1
→ 1

α− 1
, b→ ∞.

In particular, by Theorem 11.5, f ∈ L([1, ∞)) (with
∫ ∞

1 f dx = 1/(α− 1)).

This may be exploited to derive certain limits via the dominated conver-
gence theorem.

11.6 example. lim
n→∞

∞∫
1

x1/2 sin(nx)
1 + nx4 dx = 0.

For each n ∈N, define fn : [1, ∞)→ R by

fn(x) =
x1/2 sin(nx)

1 + nx4 .

Then fn → 0 (pointwise) [for each x ≥ 1, | fn(x)| ≤ x1/2/(1 + nx4) → 0, as
n→ ∞.] Furthermore,

| fn(x)| ≤ 1
x7/2 , x ≥ 1.

Hence, with f : [1, ∞)→ R given by f (x) = 1/x7/2, we have

| fn| ≤ f , ∀n ∈N, and f ∈ L([1, ∞)) [because 7/2 > 1].

Therefore fn ∈ L([1, ∞)), and since fn → 0, the DCT implies that

∞∫
1

fn dx →
∞∫

1

0 dx = 0,

as required.
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11. The Lebesgue integral (on R)

11.7 example. lim
n→∞

∞∫
1

1
(1 + x/n)nx1/n dx = 1/e.

For each n ∈N, define fn : [1, ∞)→ R by

fn(x) =
1

(1 + x/n)nx1/n .

For each x ≥ 1, we have

(1 + x/n)n → ex, x1/n → 1, n→ ∞,

so that fn(x)→ 1/ex = e−x as n→ ∞ (pointwise).
Furthermore, for x ≥ 1 and n ≥ 2,

(1 + x/n)nx1/n ≥ (1 + x/n)n ≥ 1 +
x
n
+

n(n− 1)
2

( x
n

)2
≥ x2

4
,

giving

| fn(x)| ≤ 4
x2 .

Hence, with f : [1, ∞)→ R given by f (x) = 4/x2, we have

| fn| ≤ f , ∀n ≥ 2, and f ∈ L([1, ∞)) [because 2 > 1].

Therefore fn ∈ L([1, ∞)), n ≥ 2, and since fn(x)→ e−x, the DCT implies that

∞∫
1

fn dx →
∞∫

1

e−x dx = 1/e,

where the last equality is easy to check (calculate as an improper Riemann
integral).

11.4 Density of continuous functions

11.8 theorem. Let f ∈ L(R). For every ε > 0 there is a continuous function
g : R→ R vanishing outside a bounded interval such that∫

R

| f − g| dx < ε.

Proof. This may be seen via a sequence of reductions.
1. Since f = f+ − f− and f+, f− ∈ L(R), we may suppose f ≥ 0.
2. By Theorem 8.7 and the MCT there is a simple function ρ ∈ L(R) with

0 ≤ ρ ≤ f and
∫

R
| f − ρ| dx =

∫
R
( f − ρ) dx < ε. Thus it is enough to establish

the theorem for simple functions of the form ∑n
i=1 αiχEi , where each µ(Ei) < ∞,
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and hence, in turn, for integrable characteristic functions χE. This may be done
as follows.

3. Claim. Let E ∈ M with µ(E) < ∞. Then there is a function h =

∑m
i=1 χ(ai,bi)

such that
∫

R
|χE − h| dx < ε.

To see this, pick an open set U with E ⊂ U and µ(U) < µ(E) + ε/2 < ∞
(see Exercise 8). Since U = ∪(anbn) is a disjoint union of a sequence (possibly
finite) of bounded open intervals (why?),

µ(U) = ∑
n
(bn − an),

there is an m ∈N such that µ(U)− µ(V) < ε/2, where V = ∪m
n=1(an, bn). This

gives χV = ∑m
i=1 χ(ai,bi)

and∫
R

|χE− χV | dx ≤
∫
R

|χE− χU| dx +
∫
R

|χU − χV | dx = µ(U \ E) + µ(U \V) < ε,

proving the claim.
4. Hence it is enough to prove the theorem for a characteristic function

χ(a,b), where a, b ∈ R with a < b. To do this, for δ < ε/2 < (b− a)/4, let

g(x) =



0, x ∈ R \ (a, b),
x− a

δ
, x ∈ [a, a + δ],

1, x ∈ [a + δ, b− δ],
b− x

δ
, x ∈ [b− δ, b].

Then g : R→ R is continuous (draw a picture!), and∫
R

|χ(a,b) − g| dx ≤
∫

[a,a+δ]∪[b−δ,b]

1 dµ = 2δ < ε.

This completes the proof.

11.5 A word about the Lebesgue integral in higher dimensions

The next natural step is to construct the σ-algebra Md ⊂ P(Rd) of Lebesgue
measurable subsets of Rd, d > 1, and the corresponding d-dimensional Lebesgue
measure µd. The construction closely follows the 1-dimensional setting of Sec-
tion 10, guided by the fact that µ2 should generalise the notion of area, µ3
that of volume, and so on. There is an additional difficulty compared to Sec-
tion 10 in that open sets U ⊂ Rd are significantly more complicated in higher
dimensions. In particular, there is no analogue of the property that open sets
U ⊂ R are a disjoint union of open intervals. Due to time constraints, we will
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not consider any further details, referring instead to Tao’s “An Introduction to
Measure Theory”.

The most important result for the higher-dimensional Lebesgue measures
is the Fubini–Tonelli theorem, which generalises iterated integration to the
context of Lebesgue integration. We conclude this section by giving a statement
in the special case that d = 2.

11.9 theorem (Fubini–Tonelli’s theorem). Let f : R2 → [0, ∞] be a non-negative
µ2-Lebesgue measurable function (measurable with respect toM2). Then

(a) For µ1-almost every x ∈ R, the function y 7→ f (x, y) is µ1-Lebesgue measur-
able, and in particular

∫
R

f (x, y) dy is defined (possibly infinite) almost every-
where with respect to x. Furthermore, the map x 7→

∫
R

f (x, y) dy is µ1-Lebesgue
measurable.

(b) For µ1-almost every y ∈ R, the function x 7→ f (x, y) is µ1-Lebesgue measur-
able, and in particular

∫
R

f (x, y) dx is defined (possibly infinite) almost every-
where with respect to y. Furthermore, the map y 7→

∫
R

f (x, y) dx is µ1-Lebesgue
measurable.

(c) We have

(10)
∫

R2

f dµ2 =
∫
R

∫
R

f (x, y) dy

 dx =
∫
R

∫
R

f (x, y) dx

 dy.

11.10 remark. Note that f is non-negative in the statement. For general func-
tions f a similar statement can be made, if it is known beforehand that f ∈
L(R2,M2, µ2). However, if

∫
R2 | f | dµ2 = ∞, then (10) is not necessarily true. A

counterexample is furnished by

f (x, y) =
x2 − y2

(x2 + y2)2 χ(0,1)×(0,1)(x, y).

Noting that x2−y2

(x2+y2)2 = − ∂2

∂x∂y arctan(y/x), one sees that

1∫
0

 1∫
0

x2 − y2

(x2 + y2)2 dy

 dx =
π

4
,

while
1∫

0

 1∫
0

x2 − y2

(x2 + y2)2 dx

 dy = −π

4
.
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Of course, in this case

∫
R2

| f | dµ2 =

1∫
0

 1∫
0

∣∣∣∣ x2 − y2

(x2 + y2)2

∣∣∣∣ dy

 dx =

1∫
0

 1∫
0

∣∣∣∣ x2 − y2

(x2 + y2)2

∣∣∣∣ dx

 dy = ∞.
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